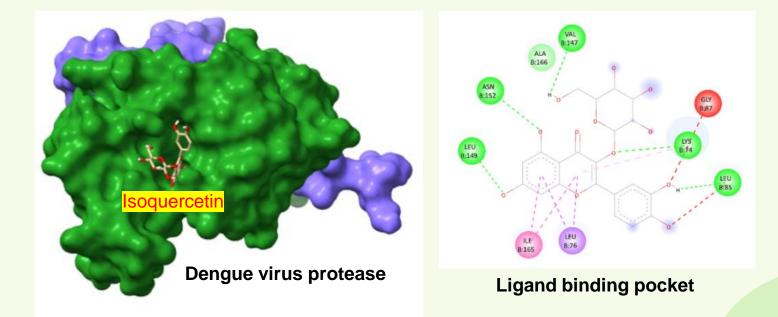
Pr. Jacques Fantini Professor of Biochemistry – Aix Marseille University

Broad antiviral activity of *Nigella sativa*. A unique mechanism of action ?

Pr. Jacques FANTINI, University of Aix-Marseille France Rational Healthy Food & Herbal Contributing to Sustainable Development Goals Conference

On a global perspective, we need a rational, complete, and widely accepted theory to explain phytotherapy efficacy and the mechanisms of action in herbal drugs

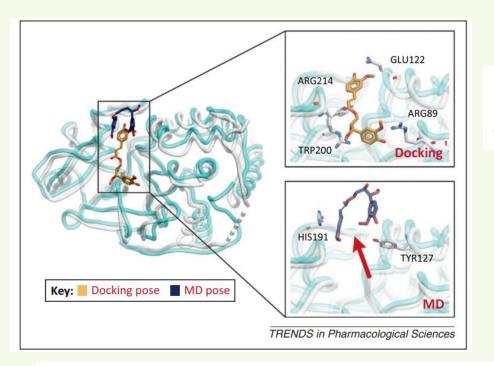

Commentary

Pharmacological Activities of Phytomedicines: A Challenge Horizon for Rational Knowledge

Javier Rodríguez Villanueva^{1,*}, Jorge Martín Esteban² and Laura Rodríguez Villanueva²

N. sativa : broad antiviral activity What about its mechanism(s) of action ?

Binding of phytochemicals from *N.* sativa to virus proteins



Several compounds, different docking

Ligand	Receptor proteins	Binding energies (kcal mol ⁻¹)	Interacting amino acid residues
Apigenin	NS5	-9.9	Leu94, Ile72, Pro298, Lys355, Val66, Gln351
Astragalin	NS5	-8.5	Thr51, Ile691, Asp690, His52, Gln693, Val687, Ala259
β-Sitosterol	NS5	-8.0	His52, Ile691, Ala535, Val687, Ala259, Tyr119
Campesterol	NS5	-8.5	Tyr119, Ala535, His52, Val687, Ala259, Pro363, Tyr119
Carvone	NS5	-6.4	Pro298, Val66, Ile72, Arg581, Pro582
Cycloeucalenol	NS5	-8.0	Val603, Phe485, Ile797, Tyr606, Asp663
Dithymoquinone	NS5	-7.5	Val687, His52, Pro692
D-Limonene	NS5	-6.0	Pro298, Val66, Lys95, Pro73, Leu94, Ile72
Isoquercetin	NS5	-8.6	His52, Thr51, Ile691, Asp690, Gln693, Val687, Ala259
Nigellicine	NS5	-9.1	Arg352, Lys74, Arg352, Glu151, Val66, Leu94, Asn690, Ile165,
			Pro298
Nigellidine	NS5	-8.4	Pro73, Lys96, Ile72, Leu94, Val66, Lys355, Pro298, Arg581, Glu296

and so on ...

Beware of AI !

Beware of docking!

Yu-Chian Chen^{1,2,3}

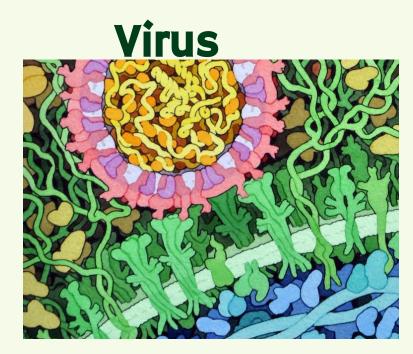
Trends in Pharmacological Sciences, February 2015, Vol. 36, No. 2

Beware of AI !

Typical very low confidence lasso-like folding proposed by AlphaFold for large disordered domains

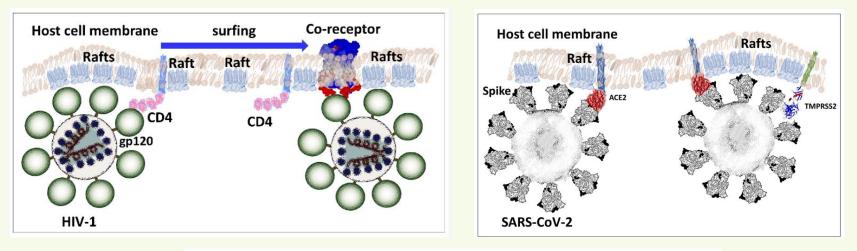
Article

The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program


MDPI

Fodil Azzaz, Nouara Yahi, Henri Chahinian and Jacques Fantini *

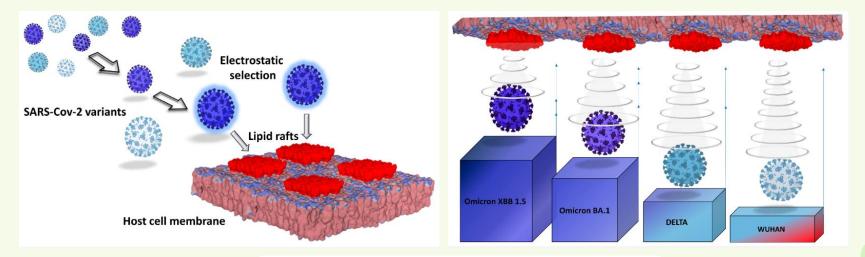
So, let's think a little bit


(human touch)

We need a unitary mechanism

Host cell membrane

Host cell membranes, lipid rafts and viral infection

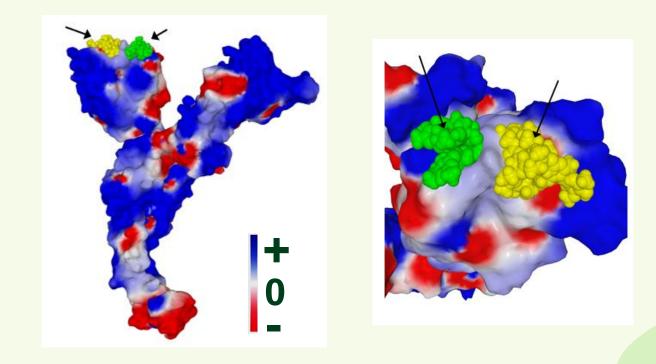


Review

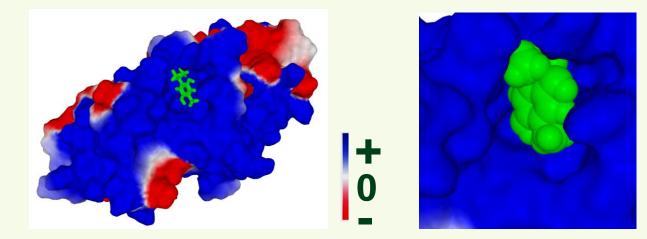
Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future

Jacques Fantini 🔍, Henri Chahinian and Nouara Yahi *

Host membranes as drivers of virus evolution



Perspective


Host Membranes as Drivers of Virus Evolution

Mélanie Matveeva, Marine Lefebvre, Henri Chahinian, Nouara Yahi and Jacques Fantini *D

Compound with broad antiviral activity block virus adhesion to lipid rafts

Thymoquinone binds to virus enveloppe proteins and blocks virus adhesion to lipid rafts

Thymoquinone, the most active antiviral phytochemical of *N. sativa*

A REVIEW ON ANTIVIRAL EFFECTS OF NIGELLA SATIVA L.

Shamim Molla¹, Md. Abul Kalam Azad¹, Md Ali Azam Al Hasib¹, M. Monayem Hossain¹, Md. Sohel Ahammed¹, Shohel Rana¹, Muhammad Toregul Islam^{*}

Abstract

Nigella sativa seeds have wide therapeutic effects and have been reported to have significant effects against many ailments such as skin diseases, jaundice, gastrointestinal problems, anorexia, conjunctivitis, dyspepsia, rheumatism, diabetes, hypertension, intrinsic hemorrhage, paralysis, amenorrhea, anorexia, asthma, cough, bronchitis, headache, fever, influenza and eczema. Thymoquinone (TQ) is one of the most active constituent and has different beneficial properties. Focus on antimicrobial effects, different extracts of *N. sativa* as well as TQ, have a broad antimicrobial spectrum, including Gram-negative, Gram-positive bacteria, viruses, parasites, schist soma and fungi. The effectiveness of *N. sativa* seeds and TQ is variable and depends on species of target microorganisms. The present review paper tries to describe some antiviral activities of *N. sativa*. Such as murine cytomegalo virus infection, avian influenza (H9N2), Chistosoma Mansoni Infection, PPR virus, Broad bean mosaic virus, HIV virus, Hepatitis C Virus, Zucchini Yellow Mosaic Virus, and Papaya Ring Spot Virus.

Keywords: Nigella sativa; antiviral effects; HIV; thymoquinone

A unique mechanism of action ? Ongoing project !

The high therapeutic index of TQ

Predicted Toxicity risk assessment of phytoconstituents of N. sativa.

Phytoconstituents	Tumorigenicity	Irritant	Reproductive Effective	Mutagenicity	Hepatotoxicity	Immunotoxicity	Cytotoxicity	Carcinogenicity	
Apigenin									
Astragalin									
β-Sitosterol									
Campesterol									
Carvone									
Cycloeucalenol									Highly to
Dithymoquinone									Highly toxic
D-Limonene									
Isoquercetin									Slightly
Nigellicine									
Nigellidine									Non-tox
Nigellimine									
Nigelline									
Rutin									
Stigmasterol									
Taraxerol									
Thymohydroquinone									
Thymoquinone									

